Lower Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “modulo Limit Cycles”

نویسندگان

  • ROMAN M. FEDOROV
  • R. FEDOROV
چکیده

We consider planar polynomial vector fields. We aim to find the (asymptotic) upper and lower bounds for the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilbert’s 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. Both upper and lower bounds can be obtained for this type of equivalence. In this paper we use the Viro gluing method to obtain the lower bound 2 2 , where c > 0 is a constant. 2000 Math. Subj. Class. Primary: 37C15; Secondary: 37E35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds for the number of orbital topological types of planar polynomial vector fields “ modulo limit cycles ”

The paper deals with planar polynomial vector fields. We aim to estimate the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilbert’s 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. This paper is the continuation of the author’s paper in [Mosc. Math. J. 1 (2001...

متن کامل

Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11

In this article, a systematic procedure has been explored to studying general Zq-equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z12-equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-...

متن کامل

Bifurcation of small limit cycles in Z5-equivariant planar vector fields of order 5

In this paper, we consider bifurcation of small limit cycles from Hopf-type singular points in Z5-equivariant planar vector fields of order 5. We apply normal form theory and the technique of solving coupled multivariate polynomial equations to prove that the maximal number of small limit cycles that such vector fields can have is 25. In addition, we show that no large limit cycles exist. Thus,...

متن کامل

Phase Portraits for Quadratic Homogeneous Polynomial Vector Fields on S

Let X be a homogeneous polynomial vector field of degree 2 on S. We show that if X has at least a non–hyperbolic singularity, then it has no limit cycles. We give necessary and sufficient conditions for determining if a singularity of X on S is a center and we characterize the global phase portrait of X modulo limit cycles. We also study the Hopf bifurcation of X and we reduce the 16 Hilbert’s ...

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002